| 1,240 | 36 | 13 |
| 下载次数 | 被引频次 | 阅读次数 |
以氨法烟气脱硫原理及非平衡级传质模型为基础,利用Aspen Plus模拟系统对某合成氨厂氨法烟气脱硫工艺过程进行建模与数值模拟研究。通过对模拟结果的分析得出:现有工艺流程存在不足,即不能很好地满足脱硫要求,且提高脱硫率会增大生产操作费用。因此,在现有工艺流程基础上提出了"AN1+AN2"的补氨工艺优化方案,并对优化方案进行模拟计算与分析。模拟结果表明,最优的补氨位置为:AN1的补氨位置在SO2吸收段一级喷淋段和二级喷淋段的中间;AN2的补氨位置在氧化段底部,通过现有工艺的氧化空气管道利用氧化空气吹扫进入氧化段;同时,补氨方式可以采取自动变频控制系统来实现。优化后,烟气脱硫率为95%,出口净烟气中SO2质量浓度为411 mg/m3,NH3质量浓度为17.5 mg/m3,各工艺指标基本能够满足正常生产要求。
Abstract:The model of SO2removal process in the packing absorption tower of a synthetic ammonia plant was established and analyzed by the chemical process simulation software Aspen Plus based on ammonia-based flue gas desulfurization theory and none-equilibrium mass transfer model. Through the analysis of simulation results,the existing process is not good enough to meet the desulfurization requirement,and the increasing of desulfurization rate is at the cost of ammonia waste and the secondary pollution,so the existing process needs to be modified and optimized. The complement ammonia optimization scheme named "AN1 + AN2 " was put forward and the optimization module tool of Aspen Plus was used to optimize and analyze the retrofit scheme. The optimization simulation results reveal that AN1 complement ammonia position is in the middle of first spray section and secondary spray section of SO2absorption segment; AN2 complement ammonia position is in the bottom of oxidation segment, through the oxidation air pipe using oxidation air purge into oxidation segment. At the same time,the automatic frequency conversion control system can be realized by using complement ammonia method. The desulfurization efficiency is 95% and SO2export mass concentration is 411 mg / m3and NH3export mass concentration is 17. 5 mg / m3in flue gas after optimization. Each technological index is in the controlled range and meets the requirements of normal production.
[1]潘玲颖,麻林巍,周喆,等.2030年中国煤电SO2和NOX排放总量的情况研究[J].动力工程学报,2010,30(5):378-383.
[2]李名升,张建辉,罗海江,等.中国二氧化硫减排分析及减排潜力[J].地理科学,2011,31(9):1065-1070.
[3]石广明,王金南,毕军,等.中国工业二氧化硫排放变化指标分解研究[J].中国环境科学,2012,32(1):56-61.
[4]王大中.21世纪中国能源科技发展展望[M].北京:清华大学出版社,2007.
[5]解京选,武建军.煤炭加工利用概论[M].北京:中国矿业大学出版社,2008.
[6]庾莉萍.中国硫资源开发结构及消费领域[J].无机盐工业,2008,40(3):61.
[7]EDWARDS T J,NEWMAN J,PRAUSNITZ J M.Thermodynamics of aqueous solutions containing volatile weak electrolytes[J].AIChE Journal,1975,21(2):248-259.
[8]KIIL S,MICHELSEN M L,DAM-JOHANSEN K.Experimental investigation and modeling of a wet flue gas desulfurization pilot plant[J].Industrial and Engineering Chemistry Research,1998,37(7):2792-2806.
[9]VILLANUEVA PERALES A L,GUTIE'RREZ ORTIZ F J,OLLERO P,et al.Controllability analysis and decentralized control of a wet limestone flue gas desulfurization plant[J].Industrial and Engineering Chemistry Research,2008,47(24):9931-9940.
[10]周家驹,许志宏.挥发性弱电解质水溶液三元系的气液平衡———NH3-CO2-H2O,NH3-H2S-H2O,NH3-SO2-H2O体系[J].化工学报,1983,34(3):234-245.
[11]KRISHNAMURTHY R,TAYLOR A.A nonequilibrium stage model of multicomponent separation processes[J].AIChE Journal,1985,31(3):449-456.
[12]GMEZ A,FUEYO N,TOMS A.Detailed modelling of a flue-gas desulfurisation plant[J].Computers and Chemical Engineering,2007,31(11):1419-1431.
[13]SRIVASTAVA R K,JOZEWICZ W,SINGER C.SO2scrubbing technologies:a review[J].Environmental Progress,2001,20(4):219-228.
[14]GAO Xiang,DING Honglei,DU Zhen,et al.Gas-liquid absorption reaction between(NH4)2SO3solution and SO2for ammonia-based wet flue gas desulfurization[J].Applied Energy,2010,87(8):2647-2651.
[15]汤桂华.硫酸[M].北京:化学工业出版社,1999.
[16]杜冬冬.氨-硫酸铵法烟气脱硫工艺研究[D].南京:南京理工大学,2009
[17]史永永,李海洋,张慧,等.氨法烟气脱硫工艺过程模拟与优化[J].化学工程,2012,40(11):68-73.
[18]王林,崔国,徐檬,等.基于ASPEN PLUS平台的生物乙醇制生物乙烯的工艺优化[J].现代化工,2009,29(9):61-63.
[19]陈晓春,张频,王焕凤,等.制药废液中四氢呋喃回收系统的模拟与优化[J].现代化工,2009,29(6):59-62.
[20]崔建祥,赵焰.氨法烟气脱硫工程中注氨的方式与方法[J].环境工程,2009,27(4):87-90.
基本信息:
DOI:
中图分类号:X701.3
引用信息:
[1]周理明,史永永,李海洋,等.氨法烟气脱硫过程的工艺优化[J].化学工程,2014,42(04):7-12.
基金信息:
国家863支撑项目(2011AA060803);; 贵州省绿色化工技术科技创新人才团队(黔科合人才团队[2009]4002);; 贵州大学研究生创新基金项目(研理工2014046)